Tensorflow综述

前言

因为数据挖掘课上自己不自量力地选择了深度强化学习方面的课程项目,本来想着直接看着二水马的代码学习相关知识,现在想想是不太可能的。我还是,乖乖地从最基础的知识入手好了。由于时间有限,因此会尽量在短时间内学会。学习网站是Tensorflow中文社区。http://www.tensorfly.cn/tfdoc/get_started/introduction.html

另外由于教程里的Tensorflow是较旧版本的,且python使用的是.2版本,因此我会对代码进行一定的修改。

简介

首先教程里给了一个简短的python程序,生成三维数组,然后使用平面拟合。仅为初步了解。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()

# 启动图 (graph)
sess = tf.Session()
sess.run(init)

# 拟合平面
for step in xrange(0, 201):
sess.run(train)
if step % 20 == 0:
print( step, sess.run(W), sess.run(b))

# 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]

这样看起来,好像挺简单?但是其实现在啥原理都不懂… 继续看教程。下载安装之类的步骤就略过了。

基本使用

上面一段代码中出现了一些新的名词,比如图, Session。这里解释之:

  • TensorFlow使用图(graph)来表示计算任务
  • 在被称为会话(Session)的上下文(context)中执行图
  • 使用tensor表示数据
  • 通过变量(Variable)维护状态
  • 使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获取数据

TensorFlow综述及介绍

这部分直接摘抄好了,我这只刚入门菜鸟,也总结不了什么… 侵权必究,哈哈哈~

综述

TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算, 产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是 [batch, height, width, channels].

一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动. 会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法. 这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是 numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是 tensorflow::Tensor 实例.

计算图

TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤 被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.

例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.

TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用, 它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.

三种语言的会话库 (session libraries) 是一致的.

构建图

构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.

Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它 op 构造器作为输入.

TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对 许多程序来说已经足够用了. 阅读 Graph 类 文档 来了解如何管理多个图.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import tensorflow as tf

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)

默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 你必须在会话里启动这个图.

在一个会话中启动图

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动默认图.

欲了解完整的会话 API, 请阅读Session 类.(http://www.tensorfly.cn/tfdoc/api_docs/python/client.html#session-management, 罢了罢了,下次再说)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 启动默认图.
sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print( result)
# ==> [[ 12.]]

# 任务完成, 关闭会话.
sess.close()

Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 “with” 代码块 来自动完成关闭动作.

1
2
3
with tf.Session() as sess:
result = sess.run([product])
print( result)

在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.

如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow 使用这些 GPU, 你必须将 op 明确指派给它们执行. with…Device 语句用来指派特定的 CPU 或 GPU 执行操作:

1
2
3
4
5
6
with tf.Session() as sess:
with tf.device("/gpu:1"):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)
...

设备用字符串进行标识. 目前支持的设备包括:

交互式使用

文档中的 Python 示例使用一个会话 Session 来 启动图, 并调用 Session.run() 方法执行操作.

为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用 InteractiveSession 代替 Session 类, 使用 Tensor.eval() 和 Operation.run() 方法代替 Session.run(). 这样可以避免使用一个变量来持有会话. (自从命令行可以直接启动python,我就不想启动Ipython了,看着前面序号不习惯。这里就记录一下。)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])

# 使用初始化器 initializer op 的 run() 方法初始化 'x'
x.initializer.run()

# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print( sub.eval())
# ==> [-2. -1.]

Tensor

TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和 一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见 Rank, Shape, 和 Type.(不贴链接了,有三个呢。)

变量

变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.global_variables_initializer()

# 启动图, 运行 op
with tf.Session() as sess:
# 运行 'init' op
sess.run(init_op)
# 打印 'state' 的初始值
print(sess.run(state))
# 运行 op, 更新 'state', 并打印 'state'
for _ in range(3):
sess.run(update)
print(sess.run(state))

# 输出:

# 0
# 1
# 2
# 3

代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run() 执行表达式之前, 它并不会真正执行赋值操作.

通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中. 在训练过程中, 通过重复运行训练图, 更新这个 tensor.

在神经网络中,Variable一般都是模型参数,在每轮训练时保存参数的更新,还可以将模型以参数的形式保存下来。

保存变量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 创建变量
v1 = tf.Variable([1.0, 2.0], name="v1")
v2 = tf.Variable([3.0, 3.0], name="v2")

# 初始化变量的op
init_op = tf.global_variables_initializer()

# 初始化saver的op
saver = tf.train.Saver()

# 注意,上面的两步都是op,真正执行也是在session中。

with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
# ...
# 保存变量到硬盘
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in file: ", save_path)

加载变量

1
2
3
4
5
6
7
saver = tf.train.Saver()

with tf.Session() as sess:
# 从硬盘加载变量
saver.restore(sess, "/tmp/model.ckpt")
print( "Model restored.")
# Do some work with the model

Fetch指定计算的结点

为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor, 这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个 tensor:

1
2
3
4
5
6
7
8
9
10
11
12
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
result = sess.run([mul, intermed])
print(result)

# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。

Feed图的输入

TensorFlow 还提供了 feed 机制, 该机制可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor。

feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 “feed” 操作, 标记的方法是使用 tf.placeholder() 为这些操作创建占位符.

首先在构建图的时候要使用占位符:tf.placeholder。
然后在run函数里,指定feed_dict。

1
2
3
4
5
6
7
8
9
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.multiply(input1, input2)

with tf.Session() as sess:
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))

# 输出:
# [array([ 14.], dtype=float32)]

for a larger-scale example of feeds. 如果没有正确提供 feed, placeholder() 操作将会产生错误。MNIST 全连通 feed 教程 (source code) 给出了一个更大规模的使用 feed 的例子.